An isomorphism theorem for ordered sets under Antiorders

Daniel A. Romano University of Banja Luka Bosnia and Hercegovina

Let $(X,=,\neq)$ be a set with a partness. A relation $\alpha \subseteq X \times X$ is an antiorder relation on X iff

 $\alpha \subseteq \neq, \, \alpha \subseteq \alpha^* \alpha, \neq \subseteq \alpha \cup \alpha^{-1}.$

A relation s on a ordered set $(X,=,\neq,\alpha)$ under an antiorder α is a quasiantiorder relation on X iff

$s \subseteq \alpha$ and $s \subseteq s^*s$.

Sometime, in the definition of antiorder relation on set $(X,=,\neq)$, we add an another condition $\alpha \cap \alpha^{-1} = \emptyset$. In that case, in the definition of quasi-antiorder relation on the ordered set $(X,=,\neq,\alpha)$ under the antiorder α , we must add the following condition $s \cap s^{-1} = \emptyset$. In this short note we proved some kind of isomorphism theorem for ordered sets under antiorders. Let $(X,=_X,\neq_X,\alpha)$ and $(Y,=_Y,\neq_Y,\beta)$ be ordered sets under antiorders, where the apartness \neq_Y is tight. If $\varphi : X \to Y$ is reverse isotone strongly extensional function, then there exists a strongly extensional and embedding reverse isotone bijection $((X,=_X,\neq_X,\alpha,c(R))/q,=_1,\neq_1,\gamma)$ $\to (\operatorname{Im}(\varphi),=_Y,\neq_Y,\beta)$ where c(R) is the biggest quasi-antiorder relation on X under $R = \alpha \cap \operatorname{Coker}(\varphi)$, $q = c(R) \cup c(R)^{-1}$ and γ antiorder induced by the quasi-antiorder c(R). If the condition $\alpha \cap \alpha^{-1} = \emptyset$ holds, then the above bijection is the isomorphism

Key words and phrases: set with apartness, coequality relation, antiorder relation, quasi-antiorder relation, strongly extensional, isotone and reverse isotone function.

AMS Subject Classification (2000): Primary: 03E04, 03E99; Secondary: 03F55